{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Sección 2.1" ], "metadata": { "id": "Aj8z9694mzFM" } }, { "cell_type": "markdown", "metadata": { "id": "d7a088dc" }, "source": [ "### Calcular la distancia entre los puntos usando `sympy`\n", "\n", "Primero, definiremos los puntos usando *Matrix* de Sympy para calcular la distancia euclidiana entre cada par de puntos usando la función *norm*." ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 39 }, "id": "8f7047cb", "outputId": "1539fdc6-63cf-4294-f3c7-27b1fdfdbc97" }, "source": [ "from sympy import Matrix\n", "import math\n", "\n", "# Definimos los puntos usando sympy.Matrix\n", "A = Matrix([1, 1])\n", "B = Matrix([3, 0])\n", "C = Matrix([4, 7])\n", "\n", "# Calcular las distancias usando el método norm()\n", "distancia_ab = (A - B).norm()\n", "distancia_bc = (B - C).norm()\n", "distancia_ca = (C - A).norm()\n", "\n", "# Mostramos la distancia entre \"a\" y \"b\"\n", "distancia_ab" ], "execution_count": 1, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "sqrt(5)" ], "text/latex": "$\\displaystyle \\sqrt{5}$" }, "metadata": {}, "execution_count": 1 } ] }, { "cell_type": "code", "source": [ "# Mostramos la distancia entre \"b\" y \"c\"\n", "distancia_bc" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 39 }, "id": "zHpcsfU51_Yp", "outputId": "daba1f04-3794-4a83-a757-12cf49229628" }, "execution_count": 2, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5*sqrt(2)" ], "text/latex": "$\\displaystyle 5 \\sqrt{2}$" }, "metadata": {}, "execution_count": 2 } ] }, { "cell_type": "code", "source": [ "# Mostramos la distancia entre \"a\" y \"c\"\n", "distancia_ca" ], "metadata": { "id": "V6C38YFa2CAY", "outputId": "1b2669d9-a8cb-4021-9e04-9fc78ca06e12", "colab": { "base_uri": "https://localhost:8080/", "height": 39 } }, "execution_count": 3, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "3*sqrt(5)" ], "text/latex": "$\\displaystyle 3 \\sqrt{5}$" }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "markdown", "metadata": { "id": "51d8abf2" }, "source": [ "### Visualizar los puntos en un gráfico\n", "\n", "Ahora, graficaremos los puntos A, B y C para ver su distribución. Sympy puede generar graficas sencillas, pero usaremos la librería `matplotlib` en esta oportunidad. No te asustes con la cantidad de parámetros, ya que estos nos permiten ajustar la gráfica a nuestro gusto o preferencia." ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 564 }, "id": "33139895", "outputId": "88edb149-5141-4896-c2a7-48b593f99f23" }, "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Extraer coordenadas para el gráfico desde los objetos Matrix de sympy\n", "points_dict = {'A': A, 'B': B, 'C': C}\n", "x_coords = [p[0] for p in points_dict.values()]\n", "y_coords = [p[1] for p in points_dict.values()]\n", "\n", "plt.figure(figsize=(8, 6))\n", "plt.scatter(x_coords, y_coords, color='blue', s=100, zorder=5)\n", "# s es el tamaño del marcador, zorder asegura que los puntos estén en la parte superior\n", "\n", "# Anotar cada punto con su nombre\n", "for label, point in points_dict.items():\n", " plt.annotate(label, (float(point[0]) + 0.1, float(point[1]) + 0.1), fontsize=12, color='red')\n", "\n", "# Conectar los puntos para formar un triángulo (opcional, para visualización)\n", "plt.plot([float(A[0]), float(B[0]), float(C[0]), float(A[0])], [float(A[1]), float(B[1]), float(C[1]), float(A[1])], 'k--', alpha=0.5)\n", "\n", "plt.title('Puntos A, B y C en un plano 2D')\n", "plt.xlabel('Coordenada X')\n", "plt.ylabel('Coordenada Y')\n", "plt.grid(True)\n", "plt.axhline(0, color='grey', linewidth=0.8) # Eje X\n", "plt.axvline(0, color='grey', linewidth=0.8) # Eje Y\n", "plt.gca().set_aspect('equal', adjustable='box') # Asegura que los ejes tengan la misma escala\n", "plt.show()" ], "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAIjCAYAAACQxNm6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXeZJREFUeJzt3XdcU2f7P/BPgIQZhmwUQREQFXEv3KhUrdjWUdejtbb117rttPZp69Na/dpq3VZrtUNR26rVulGpVq0bFLeAAxdDWQGEcHL//siTPAkESEKSk3G9Xy9eysk5OddJwpX7PvcSMMYYCCGEqLHjOwBCCDFHlBwJIUQDSo6EEKIBJUdCCNGAkiMhhGhAyZEQQjSg5EgIIRpQciSEEA0oORJCiAaUHAmxUq+99hpCQ0P5DsNiWV1y/PHHHyEQCJQ/Tk5OiIiIwNSpU5GdnW3Uc+/btw+ff/65Uc9RF47jEBQUBIFAgP3799f7+UJDQ6u9nuHh4Xj//ffx7NkzA0Rct6KiIsybNw8xMTFwc3ODs7MzWrVqhQ8//BCPHj0ySQzE8J4+fYqvv/4aPXv2hK+vLzw9PdGlSxds27at2r6a/q6DgoIQHx+P5cuXo7i42ODxORj8Gc3Ef/7zHzRp0gTPnz/HiRMnsGbNGuzbtw9XrlyBi4uLUc65b98+rFq1itcEefToUTx+/BihoaHYvHkzBg4cWO/nbNOmDd59910AwPPnz3HhwgUsXboUx44dw9mzZ+v9/LXJzMxEv379cP/+fYwYMQJvvfUWRCIRLl++jB9++AE7d+7ErVu3jBoDMY5//vkHc+fOxaBBg/DJJ5/AwcEB27dvx6hRo3Dt2jXMmzev2jGKv2upVIonT57gr7/+wsyZM7FkyRLs3r0brVu3NlyAzMps3LiRAWDnzp1T2z579mwGgCUmJhrt3FOmTGF8v6Tjx49n7dq1Y8uWLWOurq5MIpHU6/lCQkLY4MGDq21/7733GAB269atej1/baRSKYuJiWEuLi7s77//rvZ4YWEh+/jjj412fks3YcIEFhISwncYNcrMzGR3795V2yaTyVjfvn2Zo6Oj2me3pr9rxhg7cuQIc3Z2ZiEhIay0tNRg8Vldtbomffv2BQDcuXMHANC7d2/07t272n5V79PcvXsXAoEA33zzDdatW4ewsDA4OjqiY8eOOHfunNpxq1atAgC14r9CSUkJ3n33XQQHB8PR0RGRkZH45ptvwKpMipSUlITu3bvD09MTbm5uiIyMxMcff6zVNZaVlWHnzp0YNWoURo4cibKyMuzatUurY3UVEBAAAHBwqLnykZmZCYFAgG+//bbaY6dOnYJAIMCWLVtqPH779u24dOkS5s6di+7du1d73N3dHfPnz68z1ocPH+L111+Hv78/HB0d0bJlS2zYsEFtn7/++gsCgQC//vor5s+fj0aNGsHJyQlxcXFIT0+v8xw13d/7/PPP1T4HgPzzMXXqVPzxxx9o1aqVMqYDBw7UeR5FnNu2bcPHH3+MgIAAuLq6IiEhAVlZWXUe/80336Bbt27w9vaGs7Mz2rdvj99//73afrrEmJKSgoEDB8Ld3R1ubm6Ii4vD6dOn64ylSZMmCAkJqXbel156CeXl5cjMzKzzOQD53/a///1v3Lt3D5s2bdLqGG1YbbW6qoyMDACAt7e3XscnJiaiuLgYkydPhkAgwKJFi/DKK68gMzMTQqEQkydPxqNHj5CUlIRffvlF7VjGGBISEpCcnIxJkyahTZs2OHjwIN5//308fPhQmTyuXr2KF198Ea1bt8Z//vMfODo6Ij09HSdPntQqxt27d0MikWDUqFEICAhA7969sXnzZowZM0ava1aQSqXIy8sDIK9Wp6SkYMmSJejZsyeaNGlS43FNmzZFbGwsNm/ejFmzZqk9tnnzZojFYgwdOrTW6wGAf/3rX3rHnp2djS5duij/2H19fbF//35MmjQJRUVFmDlzptr+CxcuhJ2dHd577z0UFhZi0aJFGDt2LM6cOaN3DJqcOHECO3bswDvvvAOxWIzly5dj2LBhuH//vlaf0fnz50MgEODDDz9ETk4Oli5din79+iE1NRXOzs41Hrds2TIkJCRg7NixqKiowNatWzFixAjs2bMHgwcP1jnGq1evokePHnB3d8cHH3wAoVCItWvXonfv3jh27Bg6d+6s82vz5MkTAICPj4/Wx/zrX//Cxx9/jEOHDuHNN9/U+ZwaGawMaiYUxe/Dhw+z3NxclpWVxbZu3cq8vb2Zs7Mze/DgAWOMsV69erFevXpVO75qVeTOnTsMAPP29mbPnj1Tbt+1axcDwP7880/ltpqq1X/88QcDwL788ku17cOHD2cCgYClp6czxhj79ttvGQCWm5ur17W/+OKLLDY2Vvn7unXrmIODA8vJydHr+RiTV6sBVPuJjY1leXl5dR6/du1aBoBdv35dua2iooL5+PiwCRMm1Hps27ZtmYeHh96xM8bYpEmTWGBgYLVYR40axTw8PJTVsOTkZAaARUVFsfLycuV+y5YtYwBYWlpareepqQr72WefVftMAGAikUj5vjPG2KVLlxgAtmLFilrPo4izYcOGrKioSLn9119/ZQDYsmXLao2parWzoqKCtWrVivXt21evGF966SUmEolYRkaGctujR4+YWCxmPXv2rPVaNHn69Cnz8/NjPXr0UNteW7VawcPDg7Vt21bnc9bEaqvV/fr1g6+vL4KDgzFq1Ci4ublh586daNiwoV7P9+qrr8LLy0v5e48ePQBAq6L/vn37YG9vj+nTp6ttf/fdd8EYU7Yqe3p6AgB27doFmUymU3xPnz7FwYMHMXr0aOW2YcOGKauK9dG5c2ckJSUhKSkJe/bswfz583H16lUkJCSgrKys1mNHjhwJJycnbN68Wbnt4MGDyMvLw7hx42o9tqioCGKxWO+4GWPYvn07hgwZAsYY8vLylD/x8fEoLCzExYsX1Y6ZOHEiRCKR8ndd3mdd9OvXD2FhYcrfW7duDXd3d63PM378eLXXZvjw4QgMDMS+fftqPU61VJmfn4/CwkL06NGj2uugTYwcx+HQoUN46aWX0LRpU+V+gYGBGDNmDE6cOIGioiKtrgcAZDIZxo4di4KCAqxYsULr4xTc3NwM2mpttclx1apVSEpKQnJyMq5du4bMzEzEx8fr/XyNGzdW+12RKPPz8+s89t69ewgKCqr2hx4VFaV8HJAn4NjYWLzxxhvw9/fHqFGj8Ouvv2qVKLdt2wapVIq2bdsiPT0d6enpePbsGTp37qyWmPTh4+ODfv36oV+/fhg8eDA+/vhjrF+/HqdOncL69etrPdbT0xNDhgxBYmKictvmzZvRsGFD5X3gmri7u9frw56bm4uCggKsW7cOvr6+aj8TJ04EAOTk5KgdU5/3WRdVz6M4l7bnCQ8PV/tdIBCgWbNmuHv3bq3H7dmzB126dIGTkxMaNGgAX19frFmzBoWFhTrHmJubi9LSUkRGRlbbLyoqCjKZTKv7oArTpk3DgQMHsH79esTExGh9nIJEIqnXl2lVVnvPsVOnTujQoUONjwsEgmqNIYD821ATe3t7jds1PYe+nJ2dcfz4cSQnJ2Pv3r04cOAAtm3bhr59++LQoUM1xgBAmQBjY2M1Pp6Zman27V5fcXFxAIDjx49j2rRpte47fvx4/Pbbbzh16hSio6Oxe/duvPPOO7Czq/27uXnz5khJSUFWVhaCg4N1jlHxpTJu3DhMmDBB4z5Vu37o+z5XbXRR4PPzVNXff/+NhIQE9OzZE6tXr0ZgYCCEQiE2btyo9uXFR4zz5s3D6tWrsXDhQr3uMT948ACFhYVo1qyZwWKy2uRYFy8vL41VGEUpTh81/YGEhITg8OHDKC4uVvtmu3HjhvJxBTs7O8TFxSEuLg5LlizBV199hblz5yI5ORn9+vXT+Px37tzBqVOnMHXqVPTq1UvtMZlMhn/9619ITEzEJ598ove1VVVZWQlA/m1dlxdeeAG+vr7YvHkzOnfujNLSUq3+AIYMGYItW7Zg06ZNmDNnjs4x+vr6QiwWg+O4Gl87Q/Hy8kJBQUG17fX5PNXm9u3bar8zxpCenl5rP7/t27fDyckJBw8ehKOjo3L7xo0b9YrB19cXLi4uuHnzZrXHbty4ATs7O62+1BR9g2fOnIkPP/xQr1gUjaD1qR1WZbXV6rqEhYXhxo0byM3NVW67dOmS1i3Dmri6ugJAtT+SQYMGgeM4rFy5Um37t99+C4FAoOyorWnESZs2bQAA5eXlNZ5XUWr84IMPMHz4cLWfkSNHolevXvWuWlf1559/AoBW1R8HBweMHj0av/76K3788UdER0dr1Vl3+PDhiI6Oxvz58/HPP/9Ue7y4uBhz586t8Xh7e3sMGzYM27dvx5UrV6o9rvre11dYWBgKCwtx+fJl5bbHjx9j586dBjuHqp9//lntlsPvv/+Ox48f19rp397eHgKBQK00e/fuXfzxxx96xWBvb48BAwZg165datX57OxsJCYmonv37nB3d6/1ObZt24bp06dj7NixWLJkiV5xHD16FF988QWaNGmCsWPH6vUcmthsyfH111/HkiVLEB8fj0mTJiEnJwffffcdWrZsqdNNZFXt27cHAEyfPh3x8fGwt7fHqFGjMGTIEPTp0wdz587F3bt3ERMTg0OHDmHXrl2YOXOm8qb3f/7zHxw/fhyDBw9GSEgIcnJysHr1ajRq1EhjPz+FzZs3o02bNjV+SyckJGDatGm4ePEi2rVrh7t376JJkyaYMGECfvzxxzqv6+HDh8r+YxUVFbh06RLWrl0LHx+fOqvUCuPHj8fy5cuRnJyM//u//9PqGKFQiB07dqBfv37o2bMnRo4cidjYWAiFQly9ehWJiYnw8vKqta/jwoULkZycjM6dO+PNN99EixYt8OzZM1y8eBGHDx822BDIUaNG4cMPP8TLL7+M6dOno7S0FGvWrEFERITGxo76atCgAbp3746JEyciOzsbS5cuRbNmzWrtxjJ48GAsWbIEL7zwAsaMGYOcnBysWrUKzZo1U0vquvjyyy+VfXPfeecdODg4YO3atSgvL8eiRYtqPfbs2bMYP348vL29ERcXV+0LvFu3btVuBe3fvx83btxAZWUlsrOzcfToUSQlJSEkJAS7d++Gk5OTXtehkcHavc2ENk3+Cps2bWJNmzZlIpGItWnThh08eLDGrjxff/11teMBsM8++0z5e2VlJZs2bRrz9fVlAoFArQtHcXExmzVrFgsKCmJCoZCFh4ezr7/+mslkMuU+R44cYUOHDmVBQUFMJBKxoKAgNnr06FpHoVy4cIEBYP/+979r3Ofu3bsMAJs1axZjjLG0tDQGgH300Ud1vkZVu/LY2dkxPz8/Nnr0aLVuHtpo2bIls7OzU3an0lZ+fj779NNPWXR0NHNxcWFOTk6sVatWbM6cOezx48d1Hp+dnc2mTJnCgoODmVAoZAEBASwuLo6tW7dOuY+ii8xvv/2mdqzi/d+4cWOd5zl06BBr1aoVE4lELDIykm3atKnGrjxTpkypdnxISEid3ZsUcW7ZsoXNmTOH+fn5MWdnZzZ48GB27949tX01deX54YcfWHh4OHN0dGTNmzdnGzdurHeMFy9eZPHx8czNzY25uLiwPn36sFOnTtV6HYz972+1ph/V17zqviKRiAUEBLD+/fuzZcuWqXVrMhQBY7Ruta1ZvXo1PvjgA2RkZMDf399k523bti0aNGiAI0eOmOyc1uavv/5Cnz598Ntvv2H48OF8h2PVbPaeoy1LTk7G9OnTTZoYz58/j9TUVIwfP95k5ySkPmz2nqMt++2330x2ritXruDChQtYvHgxAgMD8eqrr5rs3ITUB5UciVH9/vvvmDhxIqRSKbZs2WLYG+aEGBHdcySEEA2o5EgIIRpQciSEEA0sukFGJpPh0aNHEIvFNQ7dI4TYJsYYiouLERQUVOc4fk0sOjk+evRIrwkJCCG2IysrC40aNdL5OItOjopJHLKysuocwwnIJ0lYsWIFpk2bBjc3N2OHxzupVIpDhw5hwIABEAqFfIdjdHS91k3X6y0qKkJwcLDe05hZdHJUVKXd3d21So52dnZwcnJSrnVh7aRSKVxcXODu7m4zfzx0vdZLp+vNyIDTl18iA4C7vz8gEgHR0cDIkcBbbwG1LCWhYNHJkRBCqtm7FxgxAkKRCH8CeGvRIjjb2wMnTgDvvw9cvQqsW1fn01BrNSHEety5A4waBYSEQHL2LGYCkL72GjBlCrBlC3DtGtCypVZPRcmREGI9Fi0CJBLghx/A/rt8sJpmzYAZM7R6KkqOhBDr8eefQNOmQLdu9X4qSo6EEOtQVAQ8fChveDEASo6EEOugmMHfQCsQUnIkhFgHRXc+A61dTcmREGId3N2BoCBAw2Jq+qDkSAixHi++CGRkABpWq9QVJUdCiPX44APA1RV44w0IcnKqP56RASxbptVTUXIkhJg9xoC8PCA72xl5efLfNQoLAxITgcxMuHXsiG8BCH/6CVi9Ghg3DmjRQt4RXAuUHAkhZqugQF7QCw8HgoKEmDx5AIKChAgPl28vKNBwUEICcPkypEOHYigAp/feAz76CLh7F1i8GFi+XKtzU3IkhJilgweBRo2AWbOAzEz1xzIz5dsbNZLvV014OJ4vX46mAIpzc+XdfE6cAKZOBRwdtTo/JUdCiNk5eBAYPBgoK5NXoatWoxXbysrk+2lMkPXEa3IMDQ2FQCCo9jNlyhQ+wyKE8KigABg2TJ78ZLLa95XJ5PsNG1ZDFbseeE2O586dw+PHj5U/SUlJAIARI0bwGRYhhEc//QSUltadGBVkMvn+P/9s2Dh4TY6+vr4ICAhQ/uzZswdhYWHo1asXn2ERQnjCGLBihX7HLl9eSyu2HsxmstuKigps2rQJs2fPrnGxrPLycpSXlyt/L/rvWEqpVAqpVFrnORT7aLu/pVO9XltA12v58vKAjAzdZzVnTN6FMTtbCm9v+bb6vi5mkxz/+OMPFBQU4LXXXqtxnwULFmDevHnVth86dAguLi51noPjOABAcnIy7O3t9Y7V0ihuV9gKul7LlZ3tDGCA3sfv3p0Mf/8yAEBpaWm9YhEwZsiCqP7i4+MhEonw559/1riPppJjcHAw8vLytF5ga/ny5Zg+fbrNrCGTlJSE/v3728waI3S9li0vT96fUV+PH/+v5FhUVAQfHx8UFhZqlR+qMouS471793D48GHs2LGj1v0cHR3hqKGPklAo1OrDodhH2/2tBV2vdbOm6w0IkA9yyczU7f6hQCCf49bfXwjFXbn6viZm0c9x48aN8PPzw+DBg/kOhRDCI4EAmDZNv2OnTwdqaK7QC+/JUSaTYePGjZgwYQIcHMyiIEsI4dGECYCLC2CnZXays5PvP368YePgPTkePnwY9+/fx+uvv853KIQQM+DpCWzfDggEDAJB7Z0d7ezkpcUdO+THGRLvyXHAgAFgjCEiIoLvUAghZiI+Hvj229twcKgEwCAQqN+AFAjkP87OwL59wAD9G7hrRPVYQojZ4TgOlZV7MXt2OSoqRmH37lBkZPzv8aZN5fcYJ0wAPDyMEwMlR0KI2UlJSUFhYSF8fcWYMaMRFi+Wd/DevTsZCQl91FqljYWSIyHErHAch7///hsA0L17d2RlZeH48eNo3Lgx/P3L4O1t2FbpmvB+z5EQQlRJJBK4u7tDLBajffv2ePLkCe7cuYMnT56YNA4qORJCzIqHhwdef/11SCQSODg44NmzZwCABg0a4Pnz5yaLg0qOhBCzIxAIIBaLAUCZHL28vEwaAyVHQohZUNxrLCsrU9v+9OlTAPKSoylRciSEmIWUlBQcOXIEP/zwAxTz4VRWVqKwsBAA4K2YUcJEKDkSQnin2kLdsWNH5ZyuBQUFYIxBJBLB1dXVpDFRgwwhhHeKfo2KFmqF0tJSuLm5wc3NrcZJsI2FkiMhhFdV+zWqTkDTuHFjvPfee6isrISpp56lajUhhFc1lRpV8TFjFyVHQghvais18o2SIyGENxUVFQgLC4OHh4fGUuPGjRvx888/K/s6mpL5pGlCiM1xdnZGQkICpFJptVJjZWUl7t+/r2ytNjUqORJCeKdpvRc+u/EAlBwJITzgOA579uxBTk5OjfuojowxdTcegJIjIYQHKSkpOH/+PDZt2gSZTPNSCIr7jKYeGaNAyZEQYlKqLdSxsbGwq2ElLdXZePhAyZEQYlLa9GsEKDkSQmyILv0aHR0d4eLiwltypK48hBCT0bbUCAAjR44EAJMPG1SgkiMhxCT0HQ3DR0s1QMmREGIijDF06tQJAQEBdZYazQFVqwkhJuHg4IDY2Fh069atztLgmTNncPr0abRr1w49evQwUYTqqORICDEpbarJeXl5yM/PR0VFhQki0oySIyHEqDiOQ2JiIq5fv6514wpf68aoomo1IcSoUlJScOvWLTx+/BjNmjXTOI66Kr5HxwBUciSEGFHVFmptEqPqolp8lhwpORJCjEaXfo0KfM/Go0DJkRBiFPr2a+R7Nh4FuudICDEKfUqNAGBnZ4eGDRvC39/fiNHVjZIjIcTg6rM2THh4OMLDw40VmtaoWk0IMTg7OzsMHjwYERERFjEaRhMqORJCDE4gECAiIgIRERE6HyuTyWqc49GU+I+AEGJV6jOLTmVlJb766iusWLECz58/N2BUuqPkSAgxGI7jsG7dOvz999+QSqU6H19QUIDKykoUFxfD0dHRCBFqj5IjIcRgUlJS8PjxY5w9e1avbjiKbjze3t68duMBKDkSQgykPi3UCnwvjaCKkiMhxCD07deoipIjIcSqGKLUCJjHbDwKlBwJIfVmiFIjYB6z8ShQP0dCSL0wxnDixAkA9Ss1MsbQuHFjXlccVEXJkRBSLwKBAGPHjsWZM2fqVWoUCAR45ZVXDBhZ/VByJITUm6+vL1588UW+wzAouudICNGbPh29a1JRUQGZTGaw56svSo6EEL1wHIfVq1dj586dKC0trffzJSUlYf78+Th16pQBoqs/qlYTQvSSkpKC/Px8VFZWQiQS1fv5nj17Bo7j4OzsbIDo6o9KjoQQnRmqX6Mqc+rjCJhBcnz48CHGjRsHb29vODs7Izo6GufPn+c7LEJILQzVr1FBdVEtc+jjCPBcrc7Pz0dsbCz69OmD/fv3w9fXF7dv34aXlxefYRFCamGMUqO5LKqlitfk+H//938IDg7Gxo0blduaNGnCY0SEkLoYutQIqI+p5ns2HgVek+Pu3bsRHx+PESNG4NixY2jYsCHeeecdvPnmmxr3Ly8vR3l5ufL3oqIiAPLuBNp0KVDso+3+lk71em0BXa/xMcZw5swZcByHLl26gDFmkPNnZ2eD4zh4eHjU+Hy6Xm994xKw+kzbW09OTk4AgNmzZ2PEiBE4d+4cZsyYge+++w4TJkyotv/nn3+OefPmVduemJgIFxeXOs/HcRzS0tIQHR0Ne3v7+l8AITaooqICGRkZiIiIMNjf0cOHD3H37l34+vrqtbSCJqWlpRgzZgwKCwvh7u6u8/G8JkeRSIQOHTqo9WuaPn06zp07h3/++afa/ppKjsHBwcjLy9Pq4iUSCZYvX47p06fDzc3NMBdhxqRSKZKSktC/f38IhUK+wzE6ul7rpuv1FhUVwcfHR+/kyGu1OjAwEC1atFDbFhUVhe3bt2vc39HRUePU6UKhUKsXS7GPtvtbC7pe62aq6y0uLoabmxvv9wR1/XvXF69deWJjY3Hz5k21bbdu3UJISAhPERFCNOE4DuvXr8f69euRn59v0OeWyWQoLCys18JcxsBrcpw1axZOnz6Nr776Cunp6UhMTMS6deswZcoUPsMihFShaKEuKiqCWCw26HM/e/YM3377Lb755huzSpC8JseOHTti586d2LJlC1q1aoUvvvgCS5cuxdixY/kMixCiwhj9GlUpRsaIxWLeq+yqeB9b/eKLL1rdVEeEWBNj9GtUZU6zf6viffggIcR8GbvUCJjXolqqKDkSQmpk7FIjQMmREGKBFL1JjFVqBMxvNh4F3u85EkLM15gxY3D9+nWDjVqpyhxn41Gg5EgIqZFAIKg2UMOQOI5DbGwsCgoKzGY2HgVKjoSQarKzs9GgQQOjj7xxdHREv379jHoOfVFyJISo4TgOiYmJ4DgO48aNQ0BAAN8h8YIaZAghahQt1AKBAD4+PkY917Nnz1BUVGRWI2MUKDkSQpRM0a9R1Z49e7BkyRJcunTJqOfRByVHQoiSKfo1qjLXPo4AJUdCyH+ZutSo2o2HkiMhxGyZutRojotqqaLkSAgBAOTk5AAwTakRUB8ZY06z8ShQVx5CCABg0KBBaNeundFbqBXMdTYeBUqOhBAlU/ZpNOfGGICSIyE27969e/Dw8ICnp6dJzxsREQGhUGi2a9VTciTEhnEchx07dkAikWDcuHEmTVTh4eEIDw832fl0RQ0yhNgwRQu1i4sLgoOD+Q7HrFByJMRGmbpfo6qysjLcv38fEonEZOfUFSVHQmyUqfs1qrp//z42bNiAzZs3m/S8uqDkSIgN4rPUCJh/SzVAyZEQm8RnqRGg5EgIMVNSqRQikYiXUiNgvuvGqKKuPITYoK5duyImJgYikYiX85v76BiAkiMhNsvFxYWX85r7bDwKVK0mxIbcunULd+/e5TUGc5+NR4FKjoTYCI7jsHfvXhQWFmLEiBFo2bIlL3E4Oztj8ODBkEqlZjkbjwIlR0JshGoLdWRkJG9xuLq6omPHjrydX1tUrSbEBvDdr9ESUXIkxAbw3a9RVUZGBrKyslBRUcFrHHWh5EiIlTO3UuOff/6JH374AY8fP+Y1jrpQciTEyplTqVG1G48593EEqEGGEKvn6uqKBg0aoHPnzryXGi2lGw9AyZEQqxcVFYXIyEgwxvgORW1MtTl34wEoORJiE+zszOMOmmJMtblXqQG650iI1bpy5QrOnz8PjuP4DkXJEmbjUaCSIyFWiOM4JCUlKRs/OnTowHNEcpQcCSG8Um2hbtOmDd/hKPXs2RORkZEICQnhO5Q6UXIkxMqYW79GVSEhIRaRGAG650iI1TGnfo2WjJIjIVbEnEuNeXl5uHz5MnJycvgORSuUHAmxIuZcarx9+zZ27NiBY8eO8R2KVszna4UQUm9BQUFo1qwZwsPDzarUCFhWSzVAyZEQqxIUFIRx48aZxWiYqiwtOVK1mhArZI5D8yxhxUFVlBwJsQKpqak4cOAAiouL+Q5FI0uajUeBqtWEWDiO45CcnIzCwkJ4eXmhc+fOfIdUjSXNxqNAJUdCLFxqaqrZtlArqFapzbHKrwmVHAmxYBzH4cSJEwDMr1+jquDgYIwdO5bvMHTCa8nx888/h0AgUPtp3rw5nyERYlHu3Llj9qVGAHBxcUF4eDjCw8P5DkVrvH/NtGzZEocPH1b+bq7ffISYG47jcO3aNQQFBZl1qdFS8f5qOjg4ICAggO8wCLE4qampKCkpMftSIwCcPn0arq6uiIiIgKOjI9/haIX35Hj79m0EBQXByckJXbt2xYIFC9C4cWON+5aXl6O8vFz5e1FREQBAKpVCKpXWeS7FPtrub+lUr9cW2Nr1NmnSBJGRkejWrRsYY2Z73ZWVldi3bx8YY5g9e7bes5Lr+v7W9/UQMB670u/fvx8SiQSRkZF4/Pgx5s2bh4cPH+LKlSsQi8XV9v/8888xb968atsTExPh4uJS5/k4jkNaWhqio6Nhb29vkGsghNSuqKgIe/fuhYODA4YPH26y1urS0lKMGTMGhYWFcHd31/l4XpNjVQUFBQgJCcGSJUswadKkao9rKjkGBwcjLy9Pq4uXSCRYvnw5pk+fDjc3N4PGbo6kUimSkpLQv39/CIVCvsMxOlu5XsYYBAKBxVzvzZs3sW3bNgQEBOCtt97S+3l0vd6ioiL4+PjonRx5r1ar8vT0REREBNLT0zU+7ujoqPF+hVAo1OrFUuyj7f7Wgq7Xupw/fx43b95E9+7dAZj/9RYXF8Pe3h5+fn4GiVPXv3d9mVUncIlEgoyMDAQGBvIdCiFmSTFf4+3bt/HgwQO+w9GKpU04ocBrcnzvvfdw7Ngx3L17F6dOncLLL78Me3t7jB49ms+wCDFbqvM1tmvXju9wtGJpE04o8FqtfvDgAUaPHo2nT5/C19cX3bt3x+nTp+Hr68tnWISYJXOe5bs2ipKjpUw4ocDrq7t161Y+T0+IRak6y7cZtaXWaty4cXj69Cn8/f35DkUnlvHVQ4iN01RqNNd+jVX5+PjAx8eH7zB0ZlYNMoQQzS5fvmwRY6itCZUcCbEA0dHR4DgOQqHQYu41AkBGRgYePXqE0NBQBAcH8x2OTiznVSbEhjk4OKBDhw58h6GzGzdu4Ny5c+jRo4fFJUeqVhNixjiOg0wm4zsMvVlqNx6AkiMhZi0lJQUrV67E9evX+Q5FL5bajQegajUhZkvRQl1YWKicgcqSqC6qRSVHQojBVO3XaGkscVEtVZQcCTFDljoaRpXifqO3t7fFLKqlipIjIWbI0kuNgOVOOKFgeV9HhFg5ayg1AkDHjh0RFhZmkaVGgJIjIWbn1q1bFl9qBOR9M/38/PgOQ2+UHAkxM1FRUXjttddQVlZmsaVGa0CvPCFmKDQ0lO8Q6oXjOOzduxcNGjRA165dLXLNJmqQIcRMcByH0tJSvsMwiPz8fFy8eBHHjx/Xe7VBvllm1IRYoZSUFCxduhSnTp3iO5R6U22pttQGGUqOhJgBRQt1RUWFRVZBq1Lt42ipKDkSYgasoV+jKkvv4whQciSEd9bSr1EVJUdCSL1ZW6kRsOypyhQoORLCI2ssNXIcp5xFyJLvOVr+O0GIBXvw4AEkEolVlRrt7e3x0UcfIT8/3yJn41Gg5EgIj0JCQjBt2jTk5+dbRalRQSQSWdxSrFVZz7tBiIXy9PSEp6cn32GQKuieIyE84DgOT5484TsMozhz5gz+/PNP3Lt3j+9Q6oWSIyE8SElJwXfffYe9e/fyHYrB3bp1CxcuXFB257FUlBwJMTHVFmofHx+eozE8a+jGA1ByJMTkrLFfo4LqolqW3I0HoORIiElZY79GVZa+qJYqSo6EmJA1lxoB9Sq1pc7Go0DJkRATsfZSI/C/MdWWXqUGKDkSYjJ5eXngOM5qS40AIJFIAFh+YwxAncAJMRl/f3/MmDEDT58+tcpSIwD0798fPXv2hEwm4zuUerPOd4gQMyUUChEQEMB3GEbl6OjIdwgGQdVqQoyM4zhcv34djDG+QyE60Do5lpSUGDMOQqxWSkoKtm3bhk2bNvEdilE9e/YMP//8Mw4dOsR3KAahdXJs3bo1Tpw4YcxYCLE6qi3UERERPEdjXLm5ucjMzERmZibfoRiE1slx2LBh6Nu3L95//31UVFQYMyZCrIa192tUZU3deAAdkuOiRYtw/Phx7N27F+3atUNKSoox4yLE4tlCv0ZV1rBujCqd3q0uXbogJSUFn3zyCbp164b+/ftXe8N37Nhh0AAJsVS2VGoErGfCCQWdv8rKy8uRk5MDgUAADw8Pq/82JEQftlZqBKyvWq3TO5aUlITXX38dgYGBuHDhAqKioowVFyEWrbi4GG5ubpDJZDZRalSdjcfmSo6TJ0/GTz/9hI8//hhz586Fvb29MeMixKJ5enrijTfeQFFRkU2UGiUSCVxcXCCVSi1+Nh4Frd+1kydP4tSpU2jXrp0x4yHEaihuPdkCT09PZU8WS5+NR0Hr1uqLFy9SYiSkDhzH4dSpU3j+/DnfofBCJBLxHYLBaJ0cremiCTGWlJQUHDp0CBs2bKDhghbO+m+GEGIiqi3U7du3t5rqpTb++OMPSCQS9O7dG40aNeI7HIOgiScIMRBb69eo6u7du0hPT7eKqcoUKDkSYgC22K9RwRq78QD1SI6lpaW4ceMGLl++rPajr4ULF0IgEGDmzJl6PwchfLHlUqM1LaqlSuevt9zcXEycOBH79+/X+DjHcToHce7cOaxduxatW7fW+VhC+GbLpUbgf8MGvb29reo+q84lx5kzZ6KgoABnzpyBs7MzDhw4gJ9++gnh4eHYvXu3zgFIJBKMHTsW33//Pby8vHQ+nhC+VVRUIDQ0FB4eHjZXagSsb8IJBZ2/4o4ePYpdu3ahQ4cOsLOzQ0hICPr37w93d3csWLAAgwcP1un5pkyZgsGDB6Nfv3748ssva923vLwc5eXlyt+LiooAAFKpFFKptM5zKfbRdn9Lp3q9toCv63VwcMCLL74IqVQKxpjJzm8u729OTg44joO7u7tRY9H1eusbi87JsaSkBH5+fgAALy8v5ObmIiIiAtHR0bh48aJOz7V161ZcvHgR586d02r/BQsWYN68edW2Hzp0CC4uLnUer6jyJycn29Twx6SkJL5DMCm6XtM6f/487t+/j2vXrpmk87u211taWlqv8+icHCMjI3Hz5k2EhoYiJiYGa9euRWhoKL777jsEBgZq/TxZWVmYMWMGkpKS4OTkpNUxc+bMwezZs5W/FxUVITg4GAMGDIC7u3udx0skEqSlpaFPnz5wc3PTOlZLJZVKkZSUhP79+0MoFPIdjtGZ+no5jsOhQ4fQsWNH+Pj4GP18VZnL+zto0CAAAGPMqPccdb1eRc1SXzonxxkzZuDx48cAgM8++wwvvPACNm/eDJFIhB9//FHr57lw4QJycnLUhiRyHIfjx49j5cqVKC8vr1a6c3R01LiymVAo1OrFUuyj7f7Wgq7XOC5duoSLFy8iPT0dM2fOhJ0dPz3j6P2teb/60Dk5jhs3Tvn/9u3b4969e7hx4wYaN26s07dnXFwc0tLS1LZNnDgRzZs3x4cffmhT1V5ieVRbqGNjY3lLjMR46t3nwMXFRa8JKcRiMVq1aqW2zdXVFd7e3tW2E2JubLlfo6r09HTs378fzZo1w8CBA/kOx6C0So6q9/nqsmTJEr2DIcQS2Hq/RlW5ubl4+vQpAgIC+A7F4LR6V6supnXx4kVUVlYiMjISAHDr1i3Y29vX+xv0r7/+qtfxhJgClRr/x1r7OAJaJsfk5GTl/5csWQKxWIyffvpJ2Wk7Pz8fEydORI8ePYwTJSFmgkqN6qw5Oep8F3nx4sVYsGCB2mgWLy8vfPnll1i8eLFBgyPE3MhkMnTo0AH+/v42X2oErG/FQVU6f+0VFRUhNze32vbc3FwUFxcbJChCzJVQKESPHj3QvXt3qxpHrA/V2XisZcVBVTqXHF9++WVMnDgRO3bswIMHD/DgwQNs374dkyZNwiuvvGKMGAkxO7aeGAHrnY1HQeeS43fffYf33nsPY8aMUY5ddHBwwKRJk/D1118bPEBCzAHHcfj111/Rrl07REREUHKEfMRKUFAQRCKRVb4eOidHFxcXrF69Gl9//TUyMjIAAGFhYVb5zUGIQkpKCm7evIlHjx5hxowZNt8QAwCBgYF46623+A7DaPR+h11dXWn+RWITqIXaNun1Lp8/fx6//vor7t+/j4qKCrXHduzYYZDACDEX1K9RM2NPNME3nRtktm7dim7duuH69evYuXMnpFIprl69iqNHj9rMAubEdlCpsWarVq3CypUrNfZesQY6J8evvvoK3377Lf7880+IRCIsW7YMN27cwMiRI9G4cWNjxEgIb6jUqFllZSWePn2KvLw8ODs78x2OUeicHDMyMpSzfYtEIpSUlEAgEGDWrFlYt26dwQMkhC9UaqyZtXfjAfRIjl5eXsrO3g0bNsSVK1cAyF+s+s68S4g5sbOzwwsvvIBmzZpRqbEK1ZEx1nrfUeevwp49eyIpKQnR0dEYMWIEZsyYgaNHjyIpKQlxcXHGiJEQXggEAkRFRSEqKorvUMyOYky1NY6MUdA5Oa5cuVK5TsTcuXMhFApx6tQpDBs2DJ988onBAySED9beEltf1jzhhILOyVH1xbCzs8NHH31k0IAI4RvHcfjhhx/QqlUrdOrUie41akDJsQYymQzp6enIycmBTCZTe6xnz54GCYwQvqSkpODRo0coLi5Gp06d+A7HLPn4+KC0tBS+vr58h2I0OifH06dPY8yYMbh37x4YY2qPCQQC5fKnhFgiaqHWjrUtiaCJzu/8//t//w8dOnTA3r17ERgYSPdliFWhfo1EQefkePv2bfz+++9o1qyZMeIhhDdUatROZWUl7O3trb5gpHM/x86dOyM9Pd0YsRDCKyo1aufcuXOYP38+Dh48yHcoRqXzV+O0adPw7rvv4smTJ4iOjq62cDbN1EMskUwmw4kTJwBQqbEuz549Q2VlpdW/Rjpf3bBhwwAAr7/+unKbQCBQ9gujBhliiezs7DB69GicOXOGSo11sIVuPIAeyfHOnTvGiIMQ3vn7+yMhIYHvMMyeYuigNY+OAfRIjiEhIcaIgxDe2EIV0VBUF9Wy9pKjzg0yAPDLL78gNjYWQUFBuHfvHgBg6dKl2LVrl0GDI8TYOI7D6tWrsXv3bpSVlfEdjtmzhdl4FHROjmvWrMHs2bMxaNAgFBQUKO8xenp6YunSpYaOjxCjSklJwbNnz3D79u1qjYukOluYjUdB5+S4YsUKfP/995g7dy7s7e2V2zt06IC0tDSDBkeIMVG/Rt05OzujRYsWCAsL4zsUo9OrQaZt27bVtjs6OqKkpMQgQRFiCtSvUXeNGze2mRn/dS45NmnSBKmpqdW2HzhwgOa9IxaDSo2kLjp/ImbPno0pU6bg+fPnYIzh7Nmz2LJlCxYsWID169cbI0ZCDI5KjfqRSCRwdXW1+vuNgB7J8Y033oCzszM++eQTlJaWYsyYMQgKCsKyZcswatQoY8RIiEEpvtQBKjXqorKyEosXL4aDgwNmzZoFFxcXvkMyKr0+FWPHjsXYsWNRWloKiUQCPz8/Q8dFiNEIBAJMnDgR586do1KjDhTdeAQCgdWuOKiqXl+ZLi4uVv/tQayTs7MzTcysI9WRMVSt/q+2bdtq/WJcvHixXgERYky2dM/M0GxlTLWCVsnxpZdeUv7/+fPnWL16NVq0aIGuXbsCkM8OfvXqVbzzzjtGCZIQQ+A4Dt9//z08PDzwyiuvwNPTk++QLAolRw0+++wz5f/feOMNTJ8+HV988UW1fbKysgwbHSEGpGihlslkcHNz4zsci6M6OsYW6NzP8bfffsP48eOrbR83bhy2b99ukKAIMTTq11h/trBWtSqdk6OzszNOnjxZbfvJkyfh5ORkkKAIMTTq11g/jDG0atUKzZs3t5nkqPPX58yZM/H222/j4sWLymUrz5w5gw0bNuDf//63wQMkpL6o1Fh/AoEA/fr14zsMk9L5U/LRRx+hadOmWLZsGTZt2gQAiIqKwsaNGzFy5EiDB0hIfVGpkehDp+RYWVmJr776Cq+//jolQmIxrl+/DoBKjfVRXFwMgUBgU92gdLrn6ODggEWLFqGystJY8RBicGPHjsXw4cOp1FgPx48fxzfffIPk5GS+QzEZnRtk4uLicOzYMWPEQohR2NnZoVWrVlRqrAdFS7WXlxfPkZiOzp+WgQMH4qOPPkJaWhrat29fbap0WqCImIucnBw0aNCAkqIB2FofR0CP5KgYBbNkyZJqj9HSrMRccByHzZs3QyaTYdy4cfD39+c7JIuluqiWrXTjAfRIjjKZzBhxEGJQqi3UtvQHbQy2tKiWKr1WHyTEnFG/RsNSHVNtKy3VgJ7J8dixYxgyZAiaNWuGZs2aISEhQflhJIRvqamp1K/RgFSnKrMlOifHTZs2oV+/fnBxccH06dMxffp0ODs7Iy4uDomJicaIkRCtcRyHEydOAKBSo6EEBQWha9euiIiI4DsUk9I5Oc6fPx+LFi3Ctm3blMlx27ZtWLhwYbWZeuqyZs0atG7dGu7u7nB3d0fXrl2xf/9+XUMiROnOnTtUajSwkJAQxMfHIyYmhu9QTErn5JiZmYkhQ4ZU256QkIA7d+7o9FyNGjXCwoULceHCBZw/fx59+/bF0KFDcfXqVV3DIgQAkJ+fD4BKjaT+dP70BAcH48iRI2jWrJna9sOHDyM4OFin56qaZOfPn481a9bg9OnTaNmypa6hEYKOHTuiTZs2aNiwId+hWAWO4/Do0SM0aNAALi4uNtUgo3NyfPfddzF9+nSkpqaiW7duAOTTlf34449YtmyZ3oFwHIfffvsNJSUlyhnGqyovL0d5ebny96KiIgCAVCqFVCqt8xyKfbTd39KpXq8tUFynr68vGGNWf92meH/z8vKwbt06iEQifPjhh7wmR12vt76vi4AxxnQ9aOfOnVi8eLFyQH9UVBTef/99DB06VOcA0tLS0LVrVzx//hxubm5ITEzEoEGDNO77+eefY968edW2JyYmarXQF8dxSEtLQ3R0NOzt7XWOlZiv3NxcuLq60oJvBvbw4UMcP34cXl5eeOGFF/gORyeKpaMLCwvh7u6u8/F6JUdDqqiowP3791FYWIjff/8d69evx7Fjx9CiRYtq+2oqOQYHByMvL0+ri5dIJFi+fDmmT59uE9PkS6VSJCUloX///hAKhXyHYzQcx2HlypUoKipCo0aNMG7cOKu+XgVTvL+nT5/GoUOH0KJFCwwfPtwo59CWrtdbVFQEHx8fvZOj3nesL1y4oCw5tmzZEm3bttXreUQikfL+Zfv27XHu3DksW7YMa9eurbavo6MjHB0dq20XCoVavViKfbTd31pY+/VeunQJEokEbm5u8PHxsfrrrcqY11tUVAR7e3v4+fmZzWuq69+7vnROjjk5ORg1ahT++usv5eptBQUF6NOnD7Zu3QpfX996BSSTydRKh4TURnU0TGxsLPLy8niOyLrY2oqDqnTuyjNt2jQUFxfj6tWrePbsGZ49e4YrV66gqKgI06dP1+m55syZg+PHj+Pu3btIS0vDnDlz8Ndff2Hs2LG6hkVslOoY6nbt2vEdjtWxxdl4FHQuOR44cACHDx9GVFSUcluLFi2watUqDBgwQKfnysnJwfjx4/H48WN4eHigdevWOHjwIPr3769rWMQG0Rhq47LV2XgU9JqVR1NdXigU6jxjzw8//KDr6QlRqro2DM9ti1aHMYaBAwciPz/fpmbjUdC5Wt23b1/MmDEDjx49Um57+PAhZs2ahbi4OIMGR0htysvLIRQKqdRoJEKhEJ06dUJ8fLxNdf5W0PkTtXLlSiQkJCA0NFQ5IiYrKwutWrVSrkZIiCnExsYiJiaG1ksnRqHX8MGLFy/i8OHDuHHjBgB5J3BbW9OWmAdb6K/Kl4cPH4IxBl9fX41d6KydXnURgUCA/v37U8MJ4cXt27fh6OiIxo0b8x2KVTt69CgyMjIwdOhQvfsxWzKt7zkePXoULVq0UI5nVlVYWIiWLVvShLfE6DiOw549e7BhwwZcu3aN73Csmq1OcqugdXJcunQp3nzzTY3DcDw8PDB58mSNi24RYkiqLdS2NvmqKal247HFPo6ADsnx0qVLtQ48HzBgAC5cuGCQoAjRhPo1mo6tLqqlSuvkmJ2dXetYRQcHB+Tm5hokKEI0qdqvkRiP6sgYW+zGA+iQHBs2bIgrV67U+Pjly5cRGBhokKAIqYpKjaalGFNtq/cbAR2S46BBg/Dvf/8bz58/r/ZYWVkZPvvsM7z44osGDY4QBSo1mpYtTzihoPXX7yeffIIdO3YgIiICU6dORWRkJADgxo0bWLVqFTiOw9y5c40WKLFtzs7O8PT0RNeuXanUaAJt2rSBj4+PTS83ofWnzN/fH6dOncLbb7+NOXPmKMexCgQCxMfHY9WqVfD39zdaoMS2tWzZEs2bN+c7DJvRsGFDm06MgI6dwENCQrBv3z7k5+cjPT0djDGEh4fDy8vLWPERokRLWxBT0qt+4uXlhY4dOxo6FkKquXr1KioqKtC6dWtKjiZSUlKCzMxM+Pr6IiAggO9weEM3b4jZ4jgOhw4dQmFhIWQyGTXEmMiDBw+wfft2BAYGYvLkyXyHwxudpywjxFRUW6hjYmL4DsdmUEu1HCVHYpaoXyN/KDnKUXIkZon6NfLHlteNUUXJkZgdKjXyi0bHyFFyJGaHSo38odl4/oe+konZCQgIQNOmTREZGUmlRhOj2Xj+hz55xOw0atQI48ePp9UEeSAWizF69Gg8f/7cZmfjUaDkSMyWrf9x8sHR0VE5b4Kto3uOxGykpqYiKSkJJSUlfIdCCJUciXngOA7JyckoLCyEu7s7OnfuzHdINiktLQ12dnYIDQ21+XuOVHIkZoFaqM3DkSNH8NtvvyEvL4/vUHhHyZHwjvo1mgfVbjy23scRoORIzACVGs0DdeNRR8mR8IpKjeZDdUw19RSg5Eh4RqVG86EYU01Vajn6mia8ioiIQKdOneDn50elRp7RbDzq6NNIeOXu7o5BgwbxHQYBJceqKDkSXjDG6L6WmRk0aBByc3Np/fn/ouRIeHHhwgXcvn0bffr0sel1SsyJt7c33W9UQQ0yxOQULdQ3b97EvXv3+A6HEI0oORKToxZq8/PkyROcOHECd+7c4TsUs0HJkZgU9Ws0T3fu3MHhw4dx/vx5vkMxG5QciUlRqdE8UUt1dZQciclQqdF8UXKsjpIjMZlLly5RqdFM0YqD1dFXNzGZ1q1bQyqVwsnJiUqNZoRm49GMPqHEZBwcHGgSWzNEs/FoRtVqYnQymQwymYzvMEgNVKvUNGrpf6jkSIzu4sWLOH36NPr370+LN5mhsLAwvP3225BKpXyHYlYoORKjUrRQFxYWoqCggO9wiAYODg7w9/fnOwyzQ9VqYlTUr5FYKkqOxGioX6NlOHz4ME6ePImysjK+QzEr9GklRkOlRvNXWVmJkydPgjGGmJgYvsMxK1RyJEZBpUbLQN14asZrclywYAE6duwIsVgMPz8/vPTSS7h58yafIREDuXnzJpUaLQB146kZr8nx2LFjmDJlCk6fPo2kpCRIpVIMGDAAJSUlfIZFDCAqKgr/+te/MGjQICo1mjHFmGoaGVMdr5/aAwcOqP3+448/ws/PDxcuXEDPnj15iooYgkAgQFhYGN9hkDrQhBM1M6uvdMX4zpreqPLycpSXlyt/LyoqAgBIpVKtOrAq9tF2f0uner2mwnEcKioq4OzsbLJzKvBxvXwyxPXm5OSA4ziIxWKzf910vd76Xo+AMcbq9QwGIpPJkJCQgIKCApw4cULjPp9//jnmzZtXbXtiYiJcXFzqPAfHcUhLS0N0dDTs7e3rHTOpLj09HampqYiOjqbRMBZg9+7dKCkpQb9+/eDr68t3OAZVWlqKMWPGoLCwEO7u7jofbzbJ8e2338b+/ftx4sQJNGrUSOM+mkqOwcHByMvL0+riJRIJli9fjunTp8PNzc1gsZsrqVSKpKQk9O/fH0Kh0Ojn4zgOK1euRGFhIV544QV06tTJ6OdUZerr5Zshrre8vBz5+fnw9vY2+9dM1+stKiqCj4+P3snRLKrVU6dOxZ49e3D8+PEaEyMAODo6wtHRsdp2oVCo1Yul2Efb/a2Fqa730qVLkEgk8PT0ROfOnXlriKH3V7djLa2goOvfu754TY6MMUybNg07d+7EX3/9hSZNmvAZDqkH6tdIrA2vn+ApU6YgMTERu3btglgsxpMnTwAAHh4evNzQJ/qj0TCW5/r168jIyEBERAQiIiL4Dsfs8NrPcc2aNSgsLETv3r0RGBio/Nm2bRufYREdUanRMmVmZuL8+fPIysriOxSzxHu1mli+rKwsFBcXU6nRwtC6MbWjr3hSb6GhoZg2bRry8/Op1GhBaHRM7eiTTAzCy8sLXl5efIdBtKS6qBaVHDWjWXmI3jiOQ05ODt9hED3QbDx1o+RI9JaSkoI1a9Zg//79fIdCdKS43+jt7U2z8dSAkiPRi6KFmjFG1TILRFXqutE9R6IX6tdo2Tp16oTWrVub/WQTfKLkSHRG/Rqtg5OTE5ycnPgOw2xRtZrojEqNxBZQciQ6oVKj5eM4Dps2bcK+fftQWVnJdzhmi5Ij0Ulubi6kUimVGi1Yfn6+ct5Nmte0ZvS1T3QSEBCAmTNnIi8vj0qNFkp1aQTqxlMzKjkSnYlEIgQFBfEdBtETjanWDiVHohWO43Dz5k2aLMQK0Jhq7VByJFpJSUnBli1bkJiYyHcopJ5oxUHtUHIkdVJtoW7WrBnP0ZD6omq1dig5kjpRv0brIZPJlKNiqFpdO2puJLWifo3Wxc7ODu+//z7KyspodEwd6JNOakWlRutEazTVjarVpEZUaiS2jD7tpEbFxcVwcXGBTCajUqOVOHbsGB48eICOHTvSioN1oORIauTp6Ym33noLhYWFVGq0Evfv30dGRgZatGjBdyhmj6rVpFYCgQCenp58h0EMhLrxaI+SI6mG4zicPn0a5eXlfIdCDEh1US3qxlM3So6kmpSUFBw4cAAbNmyg4YJWhBbV0g0lR6JGtYW6Xbt2NGuLFVGtUtP7WjdKjkQN9Wu0XjThhG4oORIl6tdo3TiOg5OTEzXGaIk+/USJSo3WrXv37oiNjYVMJuM7FItAJUcCgEqNtkIgENDSCFqi5EgAAOXl5WjcuDHc3d2p1EgIqFpN/svFxQXDhg1DRUUFlRqt0NOnT7FlyxYEBARg+PDhfIdjEeivgKgRiUR8h0CMIC8vjxZF0xFVq20cx3E4cOCAspsHsU7UjUd3lBxtXEpKCk6fPo2ffvqJWjGtGK0boztKjjZMtYX6pUePYGdvD3TuzHNUxBgoOeqOkqMNU+3XGHryJBAaCpw9C6Sn8x0aMTDF0EGqVmuPkqONUi01xjVtCsE//wBLlgC+vsDmzTxHRwxJdTYeKjlqj5KjjVItNUanpQFeXsDgwcDw4ZQcrUxZWRkCAgIgFotpNh4dULu+Dao6Gsb+tdeAV14BRCJg9GhgzRrg3DmgY0d+AyUGIRaLMXnyZDDGaDYeHVDJ0QbJZDK0bdsWvr6+aA8AN24Ao0bJH+zeHWjUiEqPVogSo24oOdogoVCI3r1745133oHDtm2Avz/Qp4/8QYEAePVVYOtWgOP4DZQQHlFytGECmUyeBPv0Ae7ckbdSp6fLu/NkZwNHjvAdIjGALVu2YNWqVcjMzOQ7FItCydGGcByHbdu2IT09Xb78wdGjwOPH8gQZHv6/n5Ej5QdQ1doqZGdnIzc3l4YO6oheLRuSkpKC69ev48GDB5gxYwYcNm8G/PyAVauq77xjB7BzJ/Ddd4Czs+mDJQZB3Xj0R8nRRlSbr1EqlSfAESPk3XeqCgoCtmwBdu+W34MkFokW1dIfVautFGNAXh6Qne2MvDzg4sUqs3zv3g0UFwMJCZqfoEsX6hBuBVRHxlBrtW4oOVqZggJg2TL5rcOgICEmTx6AoCAhBg5shtOnOyMmppf83tPmzYCTE9C/v+YnsrOTdwo/cAD47x8YsTw0plp/VK22IgcPAsOGAaWl1R97+tQdBw++gBMngO3bgfjdu+t+wo0b5T/EYlFy1B+VHK3EwYPygl5ZmbxKzVjVPewACFBWJsDgwfL9ifVzc3ODv78//Pz8+A7F4vCaHI8fP44hQ4YgKCgIAoEAf/zxB5/hWKyCAnmJkTGgrikZZTL5fsOGyY8j1q1Xr154++23ER0dzXcoFofX5FhSUoKYmBis0tSVhGjtp5/kVWlt56qVyeT7//yzceMixJLxes9x4MCBGDhwIJ8hWDzGgBUr9Dt2+XJg2jT5iEFifWQyGQQCAbVS68miGmTKy8tRXl6u/L2oqAgAIJVKIZVK6zxesY+2+1uCvDwgI0Oo83GMARkZQHa2FNYy/6nq+2sL6rreW7duYfv27QgPD7eKFQd1fX/r+zmwqOS4YMECzJs3r9r2Q4cOwcXFpc7juf9OpJCcnGw1C5tnZzsDGKD38bt3J8Pfv8xwAZmBpKQkvkMwqZqu98aNG7h27RqKi4u1+vuwFNq+v6Waum3owKKS45w5czB79mzl70VFRQgODsaAAQPg7u5e5/ESiQRpaWno06cP3NzcjBmqyeTlAZMn6398QkIfqyo5JiUloX///hAKdS9NWxptrlcikaB79+7o27eviaMzPF3fX0XNUl8WlRwdHR3h6OhYbbtQKNTqxVLso+3+liAgAAgLAzIzNXXfqY0MwcGV8PcXWd09R2t6f7VR0/UWFRXB3t4efn5+VvV66Pr3ri/q52jhBAJ5o4oeR2L2bAdlYpRIJPKZeojVUAwdpA7g+uE1OUokEqSmpiI1NRUAcOfOHaSmpuL+/ft8hmVxJkwAXFzkI/60YWcHuLoCr70mP4DjOKxfvx4bNmxARkYGJUkroDobD604qB9ek+P58+fRtm1btG3bFgAwe/ZstG3bFp9++imfYVkcT0/5kECBoO4EaWcn32/HDgE8PeXbHj16BIlEgqysLPzyyy+UJK0AzcZTf7zec+zduzf9ARpIfDywd6/62GrVl1ZRfXZ2ls9UNkClgTs4OBgzZszAyZMncf78eWWSDA4ORu/evdG0aVPqK2dhGGNo3rw57Ozs6L3TE91ztCLx8cCDB8DSpUDTpuqPNW0q3/7woXpiVBCLxXjhhRcwY8YMdOnSBQ4ODsok+eTJE1OETwzI19cXo0aNwkjFrO5EZxbVWk3q5ukJTJ8ub6TJzpZi9+5kJCT0gb+/UKtWaUWSjI2NxcmTJ5Gfn4/AwEDl48+ePYOXlxeVRojVo+RopQQCwNsb8Pcvg7e37kMEFUlS9baHRCLBmjVrEBAQQNVtM/f8+XM4OjrS+1MPlBxJrVT/uB48eADGGN2TtADfffcdSktLMXHiRLWSP9Ee3XMkWmvevLnGe5LUum1eFN14KioqIBaL+Q7HYlFyJDqpqeFmy5YtKCkp4Ts8AurGYyhUrSZ6qdpwY29vrzZe/dGjRwgMDKTqNg9UR8bQ668/So6kXhRJUtXDhw/x/fff0z1JnijWjaGRMfVDyZEYXE5Ojto9SUqSpkWLahkGJUdicG3btkWzZs1oxA1PKDkaBjXIEKOoqeFm165dykmHiXE0adIEkZGR8Pf35zsUi0YlR2JUVRtu/Pz84OAg/9jJZDLcu3cPoaGhVJI0oO7du/MdglWg5EhMQlPDzZUrV7Bjxw6qbhOzRMmR8EYikVDDjYGVlZVBJpPBxcWFXsN6ouRIeNOtWzdER0dTw40Bpaam4uDBg4iJicHLL7/MdzgWjRpkCK9qarg5fvw436FZJEVLtTYLzpHaUcmRmIWqDTeRkZHKUmNZWRkePXpEJUktUDcew6HkSMyKpoabf/75B8ePH6fqthYUQwdpdEz9UXIkFoEabuqmuqgWlRzrj5IjMXt9+/ZFx44da2y4CQsL4ztEs0Cz8RgWNcgQi1BTw83Vq1f5Ds1s0Gw8hkUlR2JRqjbcdO7cWflYXl4eHj9+bLOT7np4eKBLly5qU8cR/VFyJBZJU8NNcnIy/vrrL9jZ2SEuLs7m7kkGBARUe02I/ig5EqvAGIOHhwfs7e2p4YYYBCVHYhUEAgEGDBiA4uJiuLm5ITU1VS1JxsXFITQ0lO8wjerx48fw8PCAi4sL36FYBWqQIVbF2dkZ8fHx1RpuHj16xHdoRlVZWYl169Zh0aJFkEgkfIdjFajkSKySasPNmTNn0KFDB+Vjd+/eBcdxVlXdpm48hkfJkVg1sViMfv36KX9njGH//v3Izs62qnuSqiNjLP1azAVVq4lNqaysRJMmTaxu3W0aU214lByJTREKhRo7kyuSZFZWFt8h6oWSo+FRtZrYpKqdyRXDEsvKyvgOTS+qo2OIYVByJDZNNUlevnwZ4eHhyscuX74MV1dXi7gnSWtVGx4lR0IgT5KxsbHK38vLy7F//36UlZVZRMNNt27dkJeXBx8fH75DsRqUHAnRQCaTISYmxmKWb+jUqRPfIVgdapAhRANnZ+daG26ePHnCd4ja+fFHQCBQ//HzA/r0Afbv5zs6s0YlR0Jqoanh5sGDB8q1t81BXl4eZDIZfHx84OjoqHmn//wHaNIEYAzIzpYnzUGDgD//BF580aTxWgrzeYcJMWOqSTIzM1Pt3t7ff/+NoKAg3qrbZ8+eRUpKCnr06IG4uDjNOw0cCKiMEsKkSYC/P7BlCyXHGlByJEQHYrEYMTExyt+fPn2Ko0ePgjHG2z1Jvfo4enoCzs6AGZWAzQ3dcySkHpycnNC5c2deR9xolRwLC4G8PCA3F7h6FXj7bUAiAcaNM0mMloi+NgipB1dXV42dyRWt2y+99JJR+x5yHIfCwkLY2dnVfh6V8eUAAEdHYMMGoH9/o8Vm6Sg5EmIAmhpu8vLyjD5DTklJiXaz8axaBUREyP+fnQ1s2gS88QYgFgOvvGLUGC0VJUdCDEg1Sebk5MDJyQmAfDagvXv3IioqyqD3JIuLiwFosahWp07qDTKjRwNt2wJTp8obZEQig8RjTeieIyFGIBaL1ZaMTU9Px/nz5w1+T1I1OerEzk7e1/HxY+D27XrHYY2o5EiICQQEBKBLly4GH3ETEBCApk2bwtfXV/eDKyvl/9LM4RpRciTEBGqaBUiRJF999VW9llT19PREly5dIBQKdTtQKgUOHZJXp6OidD6vLaDkSIgJaUqS5eXlOjfcMCbvmZOd7Yy8PCAgQD4ysEb79wM3bsj/n5MDJCbKq9MffQS4u+t/QVaMkiMhPFBNkhKJRFmtlkql+P3339GpUyeN1e2CAuCnn4AVK4CMDCGAAZg8GQgLY5g2TYAJE+T9u6v59NP//d/JCWjeHFizBpg82ViXaPEoORLCI7FYDLFYrPz9/PnzuHnzJm7evFntnuTBg8CwYUBpafXnycwEZs0C5s4Ftm8H4uP/+8Brr8l/iM4oORJiRlq1aoXCwsJq9yTt7AbizTcDwZgAmhq5GZOXMMvKgMGDgb17VRIk0YtZdOVZtWoVQkNDlUOxzp49y3dIhPBCUd1WnSrt9u1cTJ7sA5mMQSar/XiZTH4/ctgweRWc6I/35Lht2zbMnj0bn332GS5evIiYmBjEx8cjJyeH79AI4Y1qkiwoGAqpVAjGtPtzlcnkVe+ffzZykFaO9+S4ZMkSvPnmm5g4cSJatGiB7777Di4uLtiwYQPfoRHCOzc3MQ4fjqq9JboGy5dDYxWcaIfXe44VFRW4cOEC5syZo9xmZ2eHfv364Z9//qm2f3l5OcrLy5W/FxUVAQAkEgns7OrO85L/dnaV2EinV6lUCo7jIJFIdO8HZ4Gs8Xrz8oCMDDcAumVHxoCMDOD+fQmsZc0tXd/f+v6d85oc8/LywHEc/P391bb7+/vjhqJPlooFCxZg3rx51bavWLFCOYZVG2vXrtU9WAuWlpbGdwgmZU3Xm5/vAWCm3sd/++16eHkVGiwec6Dt+/v8+fN6nUfATDXpnAaPHj1Cw4YNcerUKXTt2lW5/YMPPsCxY8dw5swZtf01lRyDg4Px8OFDuGvRkVUikWDt2rWYPHmyXqMRLI1UKkVycjL69OljNSWp2ljj9eblAU2a6P9ZvXvXukqOury/RUVFaNiwIQoLC7XKD1XxWnL08fGBvb09srOz1bZnZ2cjICCg2v6Ojo4a18hwc3PTKdnpur+lkkqlsLe3h5ubm9Uki9pY4/W6ugJhYfJ+jLoUYwQCoGlToHFjN73uV5ojXd9fWV1N+3XgtUFGJBKhffv2OHLkiHKbTCbDkSNH1EqShNgqgQCYNk2/Y6dPr2NIIakV763Vs2fPxvfff4+ffvoJ169fx9tvv42SkhJMnDiR79AIMQsTJgAuLvJZxrRhZyfff/x448Zl7XgfIfPqq68iNzcXn376KZ48eYI2bdrgwIED1RppCLFVnp7yIYGDB8sTX221RTs7eWlxx44axlgTrfFecgSAqVOn4t69eygvL8eZM2fQuXNnvkMixKzEx8uHBDo7y5Nf1eqyYpuzM7BvHzBgAD9xWhOzSI6EkLrFxwMPHgBLl8obW1Q1bSrf/vAhJUZD4b1aTQjRnqenvKFl2jQgO1uK3buTkZDQB/7+Qmp8MTAqORJigQQCwNsb8Pcvg7c3tUobAyVHQgjRgJIjIYRoQMmREEI0oORICCEaUHIkhBANKDkSQogGlBwJIUQDSo6EEKIBJUdCCNGAkiMhhGhg0WOrFSs8KBbaqotEIsHz589RVFRU71mCLYFUKkVpaSmKioqsZmbs2tD1Wjddr1eRF/RdCYbXNWTq68GDBwgODuY7DEKIGcvKykKjRo10Ps6ik6NMJsOjR48gFosh0GLkvWJBrqysLL0W3LE0dL3Wja63dowxFBcXIygoSKulm6uy6Gq1nZ2dXt8I7u7uNvFhUqDrtW50vTXz8PDQ+zzUIEMIIRpQciSEEA1sKjk6Ojris88+07j2tTWi67VudL3GZdENMoQQYiw2VXIkhBBtUXIkhBANKDkSQogGlBwJIUQDm0qOq1atQmhoKJycnNC5c2ecPXuW75CM4vjx4xgyZAiCgoIgEAjwxx9/8B2SUS1YsAAdO3aEWCyGn58fXnrpJdy8eZPvsIxmzZo1aN26tbIzdNeuXbF//36+wzKJhQsXQiAQYObMmUY/l80kx23btmH27Nn47LPPcPHiRcTExCA+Ph45OTl8h2ZwJSUliImJwapVq/gOxSSOHTuGKVOm4PTp00hKSoJUKsWAAQNQUlLCd2hG0ahRIyxcuBAXLlzA+fPn0bdvXwwdOhRXr17lOzSjOnfuHNauXYvWrVub5oTMRnTq1IlNmTJF+TvHcSwoKIgtWLCAx6iMDwDbuXMn32GYVE5ODgPAjh07xncoJuPl5cXWr1/PdxhGU1xczMLDw1lSUhLr1asXmzFjhtHPaRMlx4qKCly4cAH9+vVTbrOzs0O/fv3wzz//8BgZMYbCwkIAQIMGDXiOxPg4jsPWrVtRUlKCrl278h2O0UyZMgWDBw9W+xs2NoueeEJbeXl54DgO/v7+atv9/f1x48YNnqIixiCTyTBz5kzExsaiVatWfIdjNGlpaejatSueP38ONzc37Ny5Ey1atOA7LKPYunUrLl68iHPnzpn0vDaRHIntmDJlCq5cuYITJ07wHYpRRUZGIjU1FYWFhfj9998xYcIEHDt2zOoSZFZWFmbMmIGkpCQ4OTmZ9Nw2kRx9fHxgb2+P7Oxste3Z2dkICAjgKSpiaFOnTsWePXtw/PhxvaaysyQikQjNmjUDALRv3x7nzp3DsmXLsHbtWp4jM6wLFy4gJycH7dq1U27jOA7Hjx/HypUrUV5eDnt7e6Oc2ybuOYpEIrRv3x5HjhxRbpPJZDhy5IhV36exFYwxTJ06FTt37sTRo0fRpEkTvkMyOZlMhvLycr7DMLi4uDikpaUhNTVV+dOhQweMHTsWqampRkuMgI2UHAFg9uzZmDBhAjp06IBOnTph6dKlKCkpwcSJE/kOzeAkEgnS09OVv9+5cwepqalo0KABGjduzGNkxjFlyhQkJiZi165dEIvFePLkCQD5RKfOzs48R2d4c+bMwcCBA9G4cWMUFxcjMTERf/31Fw4ePMh3aAYnFour3Tt2dXWFt7e38e8pG7093IysWLGCNW7cmIlEItapUyd2+vRpvkMyiuTkZAag2s+ECRP4Ds0oNF0rALZx40a+QzOK119/nYWEhDCRSMR8fX1ZXFwcO3ToEN9hmYypuvLQlGWEEKKBTdxzJIQQXVFyJIQQDSg5EkKIBpQcCSFEA0qOhBCiASVHQgjRgJIjIYRoQMmREEI0oORIzN7nn3+ONm3a8B0GAKB3794mmaKf8I+SI6nmyZMnmDZtGpo2bQpHR0cEBwdjyJAhahN3EP2UlJQgLCwMs2fPVtt+9+5duLu74/vvv+cpMlKVzUw8QbRz9+5dxMbGwtPTE19//TWio6MhlUpx8OBBTJkyxaiTA0ulUgiFQqM9vzlwdXXFxo0bERcXh5dffhk9evQAYwwTJ05EbGws3nzzTb5DJP9FJUei5p133oFAIMDZs2cxbNgwREREoGXLlpg9ezZOnz6t3O/+/fsYOnQo3Nzc4O7ujpEjR1abL3PNmjUICwuDSCRCZGQkfvnlF7XHBQIB1qxZg4SEBLi6umL+/PkA5CvM+fv7QywWY9KkSXj+/Hm1ONevX4+oqCg4OTmhefPmWL16tfKxu3fvQiAQYMeOHejTpw9cXFwQExOjtiTG06dPMXr0aDRs2BAuLi6Ijo7Gli1b1M5RUlKC8ePHw83NDYGBgVi8eHG1OH755Rd06NABYrEYAQEBGDNmTJ2LtvXs2RPTpk3DxIkTUVJSgmXLliE1NRXr16+v9ThiYkaf2oJYjKdPnzKBQMC++uqrWvfjOI61adOGde/enZ0/f56dPn2atW/fnvXq1Uu5z44dO5hQKGSrVq1iN2/eZIsXL2b29vbs6NGjyn0AMD8/P7ZhwwaWkZHB7t27x7Zt28YcHR3Z+vXr2Y0bN9jcuXOZWCxmMTExyuM2bdrEAgMD2fbt21lmZibbvn07a9CgAfvxxx8ZY4zduXOHAWDNmzdne/bsYTdv3mTDhw9nISEhTCqVMsYYe/DgAfv6669ZSkoKy8jIYMuXL2f29vbszJkzyvO8/fbbrHHjxuzw4cPs8uXL7MUXX2RisVhtRpgffviB7du3j2VkZLB//vmHde3alQ0cOLDO17q0tJRFRkayl156iTk7O7NffvmlzmOIaVFyJEpnzpxhANiOHTtq3e/QoUPM3t6e3b9/X7nt6tWrDAA7e/YsY4yxbt26sTfffFPtuBEjRrBBgwYpfwfAZs6cqbZP165d2TvvvKO2rXPnzmrJMSwsjCUmJqrt88UXX7CuXbsyxv6XHFVX41PEd/369Rqva/Dgwezdd99ljMlXuxOJROzXX39VPv706VPm7Oxc63RZ586dYwBYcXFxjfsoHDhwgAHQKpkS06NqNVFiWs5ed/36dQQHByM4OFi5rUWLFvD09MT169eV+8TGxqodFxsbq3xcoUOHDtWeu3PnzmrbVGdrLykpQUZGBiZNmgQ3Nzflz5dffomMjAy141TXNw4MDAQAZZWX4zh88cUXiI6ORoMGDeDm5oaDBw/i/v37AICMjAxUVFSoxdKgQQNERkaqnePChQsYMmQIGjduDLFYjF69egGA8nlq88MPP8DFxQVpaWnKFROJ+aDkSJTCw8MhEAhMuiKjq6urTvtLJBIAwPfff682df6VK1fU7okCUGvcEQgEAOTLCQDA119/jWXLluHDDz9EcnIyUlNTER8fj4qKCq1jKSkpQXx8PNzd3bF582acO3cOO3fuBIA6n2fbtm3Ys2cPTp06BbFYjFmzZml9XmIalByJUoMGDRAfH49Vq1ahpKSk2uMFBQUAgKioKGRlZSErK0v52LVr11BQUKBc/S4qKgonT55UO/7kyZN1ro4XFRWFM2fOqG1TTXr+/v4ICgpCZmYmmjVrpvajy9oxJ0+exNChQzFu3DjExMSgadOmuHXrlvLxsLAwCIVCtVjy8/PV9rlx4waePn2KhQsXokePHmjevHmdjTGAfGG3KVOm4Msvv0RMTAx+/PFH/Pzzz9i/f7/W8RMT4LteT8xLRkYGCwgIYC1atGC///47u3XrFrt27RpbtmwZa968OWOMMZlMxtq0acN69OjBLly4wM6cOVOtQWbnzp1MKBSy1atXs1u3bikbZJKTk5X7AGA7d+5UO//WrVuZk5MT27BhA7t58yb79NNPqzXIfP/998zZ2ZktW7aM3bx5k12+fJlt2LCBLV68mDH2v3uOKSkpymPy8/MZAOX5Z82axYKDg9nJkyfZtWvX2BtvvMHc3d3Z0KFDlcf8v//3/1hISAg7cuQIS0tLYwkJCczNzU15zzEnJ4eJRCL2/vvvs4yMDLZr1y4WERFR7dxVJSQksO7duzOO45TbPvroI9aoUSNWUFBQ53tETIOSI6nm0aNHbMqUKcp1Sho2bMgSEhLUEtu9e/dYQkICc3V1ZWKxmI0YMYI9efJE7XlWr17NmjZtyoRCIYuIiGA///yz2uOakiNjjM2fP5/5+PgwNzc3NmHCBPbBBx+oJUfGGNu8eTNr06YNE4lEzMvLi/Xs2VPZkKRNcnz69CkbOnQoc3NzY35+fuyTTz5h48ePV0uOxcXFbNy4cczFxYX5+/uzRYsWVVu/JDExkYWGhjJHR0fWtWtXtnv37lqT408//cRcXFzY7du31baXl5ezVq1asYkTJ2o8jpgerSFDCCEa0D1HQgjRgJIjIYRoQMmREEI0oORICCEaUHIkhBANKDkSQogGlBwJIUQDSo6EEKIBJUdCCNGAkiMhhGhAyZEQQjT4/1jnXtE8hmrTAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] } ] }