{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Sección 4.1\n", "Vamos a calcular el dominio y rango de dos funciónes con sympy" ], "metadata": { "id": "kO2LzTWA1K_G" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "R6mMJhFx7EMA", "outputId": "4a4f7ba2-ddc2-4f89-cee5-bcbf4fed83db" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Dominio f: Reals\n", "Rango f: Interval(-oo, oo)\n", "Dominio g: Interval(3, oo)\n", "Rango g: Interval(0, oo)\n" ] } ], "source": [ "#from sympy import Symbol, S, sqrt\n", "from sympy.calculus.util import continuous_domain, function_range\n", "import sympy as sym\n", "\n", "# 1. Definimos la variable y las funciones\n", "x = sym.Symbol('x')\n", "f = x - 3\n", "g = sym.sqrt(x - 3)\n", "\n", "# 2. Calculamos el Dominio (dentro de los números Reales)\n", "dom_f = continuous_domain(f, x, sym.S.Reals)\n", "dom_g = continuous_domain(g, x, sym.S.Reals)\n", "\n", "# 3. Calculamos el Rango\n", "rango_f = function_range(f, x, sym.S.Reals)\n", "rango_g = function_range(g, x, sym.S.Reals)\n", "\n", "print(f\"Dominio f: {dom_f}\")\n", "print(f\"Rango f: {rango_f}\")\n", "print(f\"Dominio g: {dom_g}\")\n", "print(f\"Rango g: {rango_g}\")" ] } ] }