In the exercises, from 1 to 8, find the value of the expression with no use of tables or calculator.
-
\[ \log_2 \left( \frac{1}{64} \right) \]
-
\[ \log_{1/2} \left( \frac{1}{16} \right) \]
-
\[ \log_{1/3} (81) \]
-
\[ \log_{100} (0.1) \]
-
\[ \mathrm{e}^{\ln 3} \]
-
\[ \mathrm{e}^{2 \ln 3} \]
-
\[ \mathrm{e}^{(\ln 3)/2} \]
-
\[ \mathrm{e}^{3 \ln {2} - 2 \ln 3} \]
In the exercises, from 9 to 19, solve the given equation.
-
\[ \log_x (25) = \frac{1}{2} \]
-
\[ \log_4 \left( x^2 - 6x \right) = 2 \]
-
\[ \log x + \log (2x - 8) = 1 \]
-
\[ -3 \ln x = a \]
-
\[ \frac{k}{20} - \ln x = 1 \]
-
\[ 4 \ln x = \frac{1}{2} \ln x + 7 \]
-
\[ 3 \ln (\ln x) = -12 \]
-
\[ 3 \mathrm{e}^{-1.2x} = 14 \]
-
\[ 3^{x-1} = \mathrm{e^3} \]
-
\[ 3^x 2^{3x} = 64 \]
-
\[ \left( 3^x \right)^2 = 16\sqrt{2^x} \]
In the exercises, from 20 to 27, use the translation and reflection techniques to sketch the graph of the given functions.
-
\[ y = \ln (x - 2 ) \]
-
\[ y=\ln (-x ) \]
-
\[ y = \ln (x + 3) \]
-
\[ y = 4 - \ln x \]
-
\[ y = 4 - \ln (x + 3) \]
-
\[ y = 2 - \ln {\mid x \mid} \]
-
\[ y = 3 + \log x \]
-
\[ y = 3 + \log (x + 3) \]
In the exercises, from 28 to 31, write the expression in terms of the logarithms of (\boldsymbol{a}\), \(\boldsymbol{b}\) and \(\boldsymbol{c}\).
-
\[ \log { \cfrac{a^2 b}{c} } \]
-
\[ \log { \cfrac{\sqrt{b}}{a^2 c^3} } \]
-
\[ \ln \left( \cfrac{1}{a} \sqrt{ \cfrac{c^3}{b} } \right) \]
-
\[ \ln \sqrt[5]{ \cfrac{a^2}{b c^4} } \]
In the exercises, from 32 to 34, rewrite the expression using only one logarithm of coefficient 1.
-
\[ 3\ln x + \ln y - 2 \ln z \]
-
\[ 2 \log a + \log b - 3( \log z + \log x) \]
-
\[ \frac{3}{4} \ln a + 3 \ln b -\frac{3}{2} \ln c \]
-
Express each of the following functions with the form \(y=A\mathrm{e}^{kt}\):
-
\[ y = (5)3^{0.5t} \]
-
\[ y = 6(1.04)^t \]
-
Answers
-
\[ -6 \]
-
\[ 4 \]
-
\[ -4 \]
-
\[ -\frac{1}{2} \]
-
\[ 3 \]
-
\[ 9 \]
-
\[ \sqrt{3} \]
-
\[ \frac{8}{9} \]
-
\[ 625 \]
-
\[ 8, \, -2 \]
-
\[ 5 \]
-
\[ \mathrm{e}^{-\frac{a}{3}} \]
-
\[ \mathrm{e}^{ -1 + \frac{k}{20} } \]
-
\[ \mathrm{e}^2 \]
-
\[ \mathrm{e}^{ \mathrm{e}^{-4} } \]
-
\[ \frac { \ln \left( \frac{14}{3} \right) }{ -1.2 } \approx 1.2837 \]
-
\[ 1 + \frac{3}{\ln 3} \approx 3.73 \]
-
\[ \frac{6} { (3 \log_2 3) } \approx 1.3086 \]
-
\[ \frac{ 8 }{ (4 \log_2 3 – 1 ) }\approx 1.498 \]
-
\(y = \ln (x – 2)\)
-
\(y = \ln (-x)\)
-
\(y = \ln (x + 3)\)
-
\(y = 4 – \ln x\)
-
\(y = 4 – \ln (x + 3)\)
-
\(y = 2 – \ln \mid x \mid\)
-
\(y = 3 + \log x\)
-
\(y = 3 + \log (x + 3)\)
-
\[ 2 \log a + \log b – \log c \]
-
\[ \frac{1}{2} \log b – 2 \log a – 3 \log c \]
-
\[ – \ln a + \frac{3}{2} \ln c – \frac{1}{2} \ln b \]
-
\[ \frac{1}{5} ( 2 \ln a – \ln b – 4 \ln c ) \]
-
\[ \ln \frac{ x^3 y }{z^2} \]
-
\[ \log \frac{ a^2 b } {(zx)^3} \]
-
\[ \ln \frac{ \sqrt[4]{a^3} b^3 }{ \sqrt{c^3} } \]
-
-
\(y = 5 \mathrm{e}^{ (0.5 \ln 3)t }\)
-
\(y = 6 \mathrm{e}^{ ( \ln ( 1.04 ) ) t }\)
-